Manifold Optimization Over the Set of Doubly Stochastic Matrices: A Second-Order Geometry
نویسندگان
چکیده
منابع مشابه
On The Second Order Linear Recurrences By Generalized Doubly Stochastic Matrices
In this paper, we consider the relationships between the second order linear recurrences, and the generalized doubly stochastic permanents and determinants. 1. Introduction The Fibonacci sequence, fFng ; is de ned by the recurrence relation, for n 1 Fn+1 = Fn + Fn 1 (1.1) where F0 = 0; F1 = 1: The Lucas Sequence, fLng ; is de ned by the recurrence relation, for n 1 Ln+1 = Ln + Ln 1 (1.2) where ...
متن کاملRecurrent metrics in the geometry of second order differential equations
Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...
متن کاملDoubly stochastic matrices of trees
In this paper, we obtain sharp upper and lower bounds for the smallest entries of doubly stochastic matrices of trees and characterize all extreme graphs which attain the bounds. We also present a counterexample to Merris’ conjecture on relations between the smallest entry of the doubly stochastic matrix and the algebraic connectivity of a graph in [R. Merris, Doubly stochastic graph matrices I...
متن کاملThe polytope of even doubly stochastic matrices
The polytope Q, of the convex combinations of the permutation matrices of order n is well known (Birkhoff’s theorem) to be the polytope of doubly stochastic matrices of order n. In particular it is easy to decide whether a matrix of order n belongs to Q,. . check to see that the entries are nonnegative and that all row and columns sums equal 1. Now the permutations z of { 1, 2, . . . . n} are i...
متن کاملRandom doubly stochastic tridiagonal matrices
Let Tn be the compact convex set of tridiagonal doubly stochastic matrices. These arise naturally in probability problems as birth and death chains with a uniform stationary distribution. We study ‘typical’ matrices T ∈ Tn chosen uniformly at random in the set Tn. A simple algorithm is presented to allow direct sampling from the uniform distribution on Tn. Using this algorithm, the elements abo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2019
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2019.2946024